图书介绍

经典数学综合教材 上【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

经典数学综合教材 上
  • H.B.格里菲思,P.J.希尔顿著;陈应枢,陈信传译 著
  • 出版社: 贵阳:贵州人民出版社
  • ISBN:7115947
  • 出版时间:1986
  • 标注页数:292页
  • 文件大小:41MB
  • 文件页数:327页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

经典数学综合教材 上PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一部分 数学语言1

第一章 描述性集合论3

1.1 集合的概念3

1.2 包含4

1.3 维恩图5

1.4 相等5

1.5 幂集6

1.6 并与交7

1.7 补集10

1.8 量词12

第二章 函数:描述性理论15

2.1 函数的概念15

2.2 函数的相等16

2.3 象17

2.4 单射、满射和等价17

2.5 例题18

2.6 符号和语言的泛用20

2.7 函数的复合22

2.8 单射、满射和等价的复合23

2.9 反演定理23

2.10 等价集26

2.11 计数26

第三章 笛卡儿积30

3.1 序对和乘积30

3.2 代数性质31

3.3 函数的图象33

3.4 再论函数的概念33

3.5 再论序对35

3.6 乘法系统36

第四章 关系39

4.1 什么是关系39

4.2 RST条件40

4.3 线状图40

4.4 序关系41

4.5 等价关系43

4.6 划分46

4.7 商映射46

第五章 数学归纳法49

5.1 物理的和数学的归纳法49

5.2 一个坏习惯50

5.3 归纳定义法51

第二部分 集合论续57

第六章 函数的集合59

6.1 集合BA59

6.2 BA的映射60

6.3 当#B=2的情形63

6.4 乱排、排列和集Ⅰ(A,B)64

6.5 组合67

6.6 集S(A,B)68

第七章 计数和超限算术71

7.1 计数71

7.2 超限算术73

7.3 超限算术里的序关系75

7.4 选择公理77

第八章 集合代数和命题演算83

8.1 集合代数83

8.2 B-代数87

8.3 命题演算90

8.4 发展为更一般的公式92

8.5 蕴涵和演绎法94

第三部分 算术98

第九章 交换环和域99

9.1 作为代数系统的整数集99

9.2 环100

9.3 推论101

9.4 子环102

9.5 交换群103

9.6 域105

第十章 模m的算术110

10.1 剩余类和环Zm110

10.2 Zm的理论112

10.3 欧拉函数114

10.4 同余式的解115

第十一章 具有整范数的环118

11.1 整范数118

11.2 例题119

11.3 欧几里得整环内的因子分解121

11.4 理想122

11.5 HCF124

11.6 欧几里得演段126

11.7 LCM128

第十二章 分解质因数130

12.1 质数130

12.2 不可约和质数131

12.3 质因数分解的存在和唯一性132

12.4 在Z[x]内分解因式134

第十三章 HCF理论的应用137

13.1 部分分式137

13.2 连分式140

第四部分 R3中的几何143

第十四章 R3的向量几何145

14.1 向量空间R3145

14.2 线性相关;基148

14.3 直线的方程149

14.4 长度150

14.5 球151

14.6 射影151

14.7 向量152

14.8 数量积154

14.9 平面155

14.10 向量积158

14.11 体积160

第十五章 线性代数和R3内的测度162

15.1 矩阵和行列式162

15.2 三个线性方程165

15.3 线性变换168

附录:长度和面积175

15.4 路径176

15.5 可求长性177

15.6 约当弧和约当曲线180

15.7 面积181

15.8 多边形182

15.9 α的性质183

15.10 曲线边界185

15.11 格187

15.12 ?A与?相关188

第十六章 几何的逻辑191

16.1 希腊的哲学及其它191

16.2 希尔伯特192

16.3 教学法193

16.4 R3的一个代数模型193

16.5 性能指标197

16.6 证明的方案198

16.7 证明199

16.8 平行与垂直201

第十七章 射影几何204

17.1 广告204

17.2 透视204

17.3 平面射影几何205

17.4 对偶性206

17.5 ?(R)几何208

17.6 与R2的关系211

17.7 圆锥曲线211

17.8 RP2的模型214

17.9 将?(R)嵌入?(C)216

17.10 在R3内的射影218

17.11 不变量,爱尔朗根纲领220

第五部分 代数224

第十八章 群226

18.1 群的概念226

18.2 群的定义227

18.3 指数;子群230

18.4 群的生成元231

18.5 子群234

18.6 群的同态235

18.7 同构237

18.8 核与象239

18.9 子群、商空间和商群240

18.10 环243

第十九章 向量空间和线性方程244

19.1 原始定义244

19.2 基246

19.3 子空间248

19.4 同态:矩阵249

19.5 线性变换的秩253

19.6 线性方程254

第二十章 内积空间和对偶性258

20.1 数量积;距离258

20.2 V内的几何260

20.3 正交性262

20.4 对偶性263

20.5 正交变换266

第二十一章 不等式和布尔代数267

21.1 不等式267

21.2 某些应用269

21.3 戴德金的有理数的完备性272

21.4 布尔代数274

21.5 将一布尔代数排序276

21.6 同态278

第二十二章 n次多项式和n次方程280

22.1 多项式的形式280

22.2 代换282

22.3 余式定理283

22.4 多项式函数285

22.5 实和复的多项式286

22.6 求导287

22.7 多项式方程的解289

22.8 应用到有限域291

第六部分 数系与拓扑293

第二十三章 有理数295

23.1 皮亚诺公理295

23.2 系统Z297

23.3 系统Q300

第二十四章 实数与复数303

24.1 Q的不完备性303

24.2 序列306

24.3 R的结构309

24.4 R的序关系311

24.5 十进小数312

24.6 R的完备性315

24.7 复数317

24.8 C的完备性319

24.9 四元数与超复数320

第二十五章 Rn的拓扑323

25.1 引言323

25.2 爱尔朗根纲领中的拓扑学323

25.3 同胚324

25.4 笛卡尔积329

25.5 度量空间329

25.6 闭集与开集332

25.7 维数337

25.8 紧空间339

25.9 商空间340

25.10 单连通空间:同伦345

25.11 代数方法348

25.12 流形351

25.13 应用与进一步展望357

25.14 参考书介绍357

第七部分 微积分358

第二十六章 R1上代数360

26.1 区间360

26.2 代数运算360

26.3 多项式362

26.4 倒数363

26.5 序关系363

第二十七章 极限过程365

27.1 极限365

27.2 极限的代数367

27.3 无限极限369

27.4 序列371

第二十八章 连续函数372

28.1 代数?(Ⅰ)372

28.2 复合373

28.3 不等式保存原理374

28.4 最大与最小375

28.5 两个较深刻的定理375

28.6 指数律377

第二十九章 可微函数379

29.1 微商379

29.2 导数380

29.3 代数?(Ⅰ)380

29.4 复合382

29.5 微分dcf383

29.6 高阶导数385

29.7 洛尔条件387

29.8 例题(三角函数)389

29.9 反函数392

第三十章 积分396

30.1 问题396

30.2 积分法则398

30.3 换元积分法402

30.4 积分的收敛性404

第七部分(续) 微积分的补充课题406

第三十一章 对数函数与指数函数407

31.1 对数函数407

31.2 函数exp410

31.3 指数律411

第三十二章 微分方程414

32.1 线性一阶方程414

32.2 二阶方程415

第三十三章 复变函数419

33.1 微分法419

33.2 函数Cis419

33.3 ez的代数421

第三十四章 逼近与迭代425

34.1 泰勒展开式425

34.2 极大与极小428

34.3 牛顿逼近法429

34.4 近似积分法430

34.5 级数433

34.6 进一步展望436

第三十五章 多元函数437

35.1 问题437

35.2 连续性438

35.3 微分439

35.4 小误差公式442

35.5 可微性和导数442

第三十六章 向量值函数444

36.1 可微性444

36.2 复合447

36.3 坐标系448

36.4 微分的链法则449

36.5 主要公式摘要452

第三十七章 Cr—函数454

37.1 问题454

37.2 泰勒展开式454

37.3 临界点455

37.4 隐函数456

37.5 说明459

第八部分 基础462

第三十八章 范畴与函子463

38.1 范畴463

38.2 初始对象、最终对象、零对象466

38.3 函子467

38.4 范畴论中的标准概念473

第三十九章 数理逻辑481

39.1 公理481

39.2 集483

39.3 相容性485

39.4 形式系统488

39.5 ‘证明对策’的例题490

39.6 哥德尔定理492

39.7 哥德尔的证明494

39.8 选择公理与连续统假设497

参考文献498

专用符号索引505

热门推荐