图书介绍

通俗线性代数讲义【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

通俗线性代数讲义
  • 李徐鸿编著 著
  • 出版社: 北京:中国人民大学出版社
  • ISBN:7300045944
  • 出版时间:2003
  • 标注页数:316页
  • 文件大小:11MB
  • 文件页数:337页
  • 主题词:线性代数-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

通俗线性代数讲义PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第一章 行列式1

第一节 问题的提出1

一 二元线性方程组1

二 三元线性方程组2

第二节 全排列及其逆序数4

一 全排列4

二 逆序数与顺序数4

三 对换6

第三节 行列式的定义7

第四节 行列式的性质12

第五节 行列式的展开19

一 k阶子式及其余子式和代数余子式19

二 行列式的展开20

第六节 解线性方程组的根本法则——克拉默法则29

小结34

习题一35

第二章 矩阵40

第一节 矩阵的概念40

一 引例40

二 矩阵的概念41

第二节 矩阵的运算43

一 矩阵的线性运算43

二 矩阵与矩阵相乘44

三 矩阵的转置49

四 方阵的行列式49

五 方阵的迹53

第三节 几种特殊的矩阵54

一 共轭矩阵54

二 对称矩阵54

三 反对称矩阵55

四 对角形矩阵56

第四节 逆矩阵58

一 逆矩阵的概念58

二 矩阵可逆的充要条件59

三 运算律62

四 用逆矩阵的结构式证明克拉默法则63

第五节 矩阵的分块64

一 分块矩阵的概念64

二 分块矩阵的运算65

三 分块对角矩阵的运算70

小结71

习题二73

第三章 向量组的线性相关性78

第一节 线性相关与线性无关78

一 引例78

二 n维向量79

三 线性相关性81

第二节 向量组线性相关性的判定定理84

一 向量组的等价关系92

第三节 向量组的等价关系与极大线性无关组92

二 极大线性无关组94

第四节 向量组的秩与矩阵的秩98

一 向量组的秩98

二 矩阵的秩101

第五节 矩阵的初等变换104

一 矩阵的初等变换104

二 初等矩阵105

三 矩阵的等价106

四 用初等变换求逆矩阵117

一 向量空间118

第六节 向量空间118

二 向量空间的基和维数120

第七节 欧几里得向量空间124

一 引言124

二 概念124

三 正交向量组125

四 正交规范基127

五 正交矩阵131

小结136

习题三139

第一节 线性方程组有解的充要条件143

第四章 线性方程组143

第二节 齐次线性方程组147

一 齐次线性方程组的解的结构147

二 解齐次线性方程组151

第三节 非齐次线性方程组154

一 非齐次线性方程组的解的结构154

二 解非齐次线性方程组155

小结159

习题四161

一 n次代数方程164

预备知识:n次代数方程概述164

第五章 相似矩阵及二次型164

二 综合除法167

三 剩余定理169

四 根的定理171

五 根与系数的关系172

第一节 方阵的特征值与特征向量177

一 方阵的特征值与特征向量177

二 特征值与特征向量的性质182

一 相似矩阵186

第二节 矩阵的相似对角形186

二 矩阵与对角形矩阵相似的条件188

第三节 实对称矩阵的对角化191

一 实对称矩阵的特征值与特征向量的性质191

二 主轴定理193

第四节 二次型及其标准形196

一 问题的提出196

二 二次型的矩阵表示197

三 二次型的标准化198

第五节 二次型的分类及其规范形207

一 惯性定理207

二 二次型的分类208

三 二次型的规范形210

第六节 用初等变换求实对称矩阵的合同矩阵与其变换矩阵211

小结216

习题五217

第六章 线性方程组的数值解法219

第一节 主元素消去法219

一 消去法219

二 主元素消去法222

一 简单迭代法225

第二节 迭代法225

二 逐个迭代法230

小结231

习题六231

第七章 投入产出数学模型233

第一节 引言233

一 投入产出方法233

二 历史背景234

三 在经济工作中的应用235

四 投入产出模型的种类236

二 投入产出模型237

第二节 投入产出模型237

一 引列237

三 投入产出平衡关系式238

四 直接消耗系数240

第三节 平衡方程组的解法242

一 消耗平衡方程组的解法242

二 分配平衡方程组的解法242

一 概念246

二 求完全消耗系数矩阵246

第四节 完全消耗系数246

三 评述246

三 对某个部门最终产品量的变动的讨论249

小结251

习题七251

第八章 线性空间与线性变换253

第一节 线性空间的概念与性质253

一 线性空间的概念253

二 线性空间的性质256

第二节 线性空间的维数、基与坐标257

一 线性空间的维数、基与坐标257

三 线性子空间258

二 线性空间的同构258

四 基变换与坐标变换259

第三节 线性变换的概念、性质与运算262

一 两个线性空间之间的线性变换262

二 同一个线性空间中的线性变换262

第四节 线性变换的矩阵表示268

小结273

习题八274

习题答案277

拐点理论的延拓288

附录 高等数学拾遗288

柯西中值定理的一个证明292

底指、指幂、幂底函数的求导方法及底对数函数294

分部积分法分部的诀窍——分割求导选u法297

一 个命题的推广300

二 元函数全微分的几何解释的矢量证明301

定积分与曲线积分的关系302

一轴与三轴相传动时的坐标计算302

实数的几何模型及运算律303

行列式与矩阵的运动307

热门推荐