图书介绍

相平衡、相图和相变 其热力学基础 第2版 英文【2025|PDF|Epub|mobi|kindle电子书版本百度云盘下载】

相平衡、相图和相变 其热力学基础 第2版 英文
  • 中华书局编辑部编 著
  • 出版社:
  • ISBN:
  • 出版时间:2014
  • 标注页数:0页
  • 文件大小:52MB
  • 文件页数:528页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

相平衡、相图和相变 其热力学基础 第2版 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Basic concepts of thermodynamics1

1.1 External state variables1

1.2 Internal state variables3

1.3 The first law of thermodynamics5

1.4 Freezing-in conditions9

1.5 Reversible and irreversible processes10

1.6 Second law of thermodynamics13

1.7 Condition of internal equilibrium17

1.8 Drivingforce19

1.9 Combined first and second law21

1.10 General conditions of equilibrium23

1.11 Characteristic state functions24

1.12 Entropy26

2 Manipulation of thermodynamic quantities30

2.1 Evaluation of one characteristic state function from another30

2.2 Internal variables at equilibrium31

2.3 Equations of state33

2.4 Experimental conditions34

2.5 Notation for partial derivatives37

2.6 Use of various derivatives38

2.7 Comparison between CV and CP40

2.8 Change of independent variables41

2.9 Maxwell relations43

3 Systems with variable composition45

3.1 Chemical potential45

3 2 Molar and integral quantities46

3.3 More about characteristic state functions48

3.4 Additivity of extensive quantities.Free energy and exergy51

3.5 Various forms of the combined law52

3.6 Calculation of equilibrium54

3.7 Evaluation of the driving force56

3.8 Driving force for molecular reactions58

3.9 Evaluation of integrated driving force as function of Tor P59

3.10 Effective driving force60

4 Practical handling of multicomponent systems63

4.1 Partial quantities63

4.2 Relations for partial quantities65

4.3 Alternative variables for composition67

4.4 The lever rule70

4.5 The tie-line rule71

4.6 Different sets of components74

4.7 Constitution and constituents75

4.8 Chemical potentials in a phase with sublattices77

5 Thermodynamics of processes80

5.1 Thermodynamic treatment of kinetics of internal processes80

5.2 Transformation of the set ofprocesses83

5.3 Alternative methods of transformation85

5.4 Basic thermodynamic considerations for processes89

5.5 Homogeneous chemical reactions92

5.6 Transport processes in discontinuous systems95

5.7 Transport processes in continuous systems98

5.8 Substitutional diffusion101

5.9 Onsager's extremum principle104

6 Stability108

6.1 Introduction108

6.2 Some necessary conditions of stability110

6.3 Sufficient conditions of stability113

6.4 Summary of stability conditions115

6.5 Limit of stability116

6.6 Limit of stability against fluctuations in composition117

6.7 Chemical capacitance120

6.8 Limit of stability against fluctuations of internal variables121

6.9 Le Chatelier's principle123

7 Applications of molar Gibbs energy diagrams126

7.1 Molar Gibbs energy diagrams for binary systems126

7.2 Instability of binary solutions131

7.3 Illustration of the Gibbs-Duhem relation132

7.4 Two-phase equilibria in binary systems135

7.5 Allotropic phase boundaries137

7.6 Effect of a pressure difference on a two-phase equilibrium138

7.7 Driving force for the formation of a new phase142

7.8 Partitionless transformation under local equilibrium144

7.9 Activation energy for a fluctuation147

7.10 Ternary systems149

7.11 Solubility product151

8 Phase equilibria and potential phase diagrams155

8.1 Gibbs'phase rule155

8.2 Fundamental property diagram157

8.3 Topology of potential phase diagrams162

8.4 Potential phase diagrams in binary and multinary systems166

8.5 Sections of potential phase diagrams168

8.6 Binary systems170

8.7 Ternary systems173

8.8 Direction of phase fields in potential phase diagrams177

8.9 Extremum in temperature and pressure181

9 Molar phase diagrams185

9.1 Molar axes185

9.2 Sets of conjugate pairs containing molar variables189

9.3 Phase boundaries193

9.4 Sections of molar phase diagrams195

9.5 Schreinemakers'rule197

9.6 Topology of sectioned molar diagrams201

10 Projected and mixed phase diagrams205

10.1 Schreinemakers'projection of potential phase diagrams205

10.2 The phase field rule and projected diagrams208

10.3 Relation between molar diagrams and Schreinemakers' projected diagrams212

10.4 Coincidence of projected surfaces215

10.5 Projection of higher-order invariant equilibria217

10.6 The phase field rule and mixed diagrams220

10.7 Selection of axes in mixed diagrams223

10.8 Konovalov's rule226

10.9 General rule for singular equilibria229

11 Direction of phase boundaries233

11.1 Use of distribution coefficient233

11.2 Calculation of allotropic phase boundaries235

11.3 Variation of a chemical potential in a two-phase field238

11.4 Direction of phase boundaries240

11.5 Congruent melting points244

11.6 Vertical phase boundaries248

11.7 Slope of phase boundaries in isothermal sections249

11.8 The effect of a pressure difference between two phases251

12 Sharp and gradual phase transformations253

12.1 Experimental conditions253

12.2 Characterization of phase transformations255

12.3 Microstructural character259

12.4 Phase transformations in alloys261

12.5 Classification of sharp phase transformations262

12.6 Applications of Schreinemakers'projection266

12.7 Scheil's reaction diagram270

12.8 Gradual phase transformations at fixed composition272

12.9 Phase transformations controlled by a chemical potential275

13 Transformations in closed systems279

13.1 The phase field rule at constant composition279

13.2 Reaction coefficients in sharp transformations for p=c+1280

13.3 Graphical evaluation ofreaction coefficients283

13.4 Reaction coefficients in gradual transformations for p=c285

13.5 Driving force for sharp phase transformations287

13.6 Driving force under constant chemical potential291

13.7 Reaction coefficients at constant chemical potential294

13.8 Compositional degeneracies for p=c295

13.9 Effect oftwo compositional degeneracies for p=c-1299

14 Partitionless transformations302

14.1 Deviation from local equilibrium302

14.2 Adiabatic phase transformation303

14.3 Quasi-adiabatic phase transformation305

14.4 Partitionless transformations in binary system308

14.5 Partial chemical equilibrium311

14 6 Transformations in steel under quasi-paraequilibrium315

14.7 Transformations in steel under partitioning of alloying elements319

15 Limit of stability and critical phenomena322

15.1 Transformations and transitions322

15.2 Order-disorder transitions325

15.3 Miscibility gaps330

15.4 Spinodal decomposition334

15.5 Tri-critical points338

16 Interfaces344

16.1 Surface energy and surface stress344

16.2 Phase equilibrium at curved interfaces345

16.3 Phase equilibrium at fluid/fluid interfaces346

16.4 Size stability for spherical inclusions350

16.5 Nucleation351

16.6 Phase equilibrium at crystal/fluid interface353

16.7 Equilibrium at curved interfaces with regard to composition356

16.8 Equilibrium for crystalline inclusions with regard to composition359

16.9 Surface segregation361

16.10 Coherency within a phase363

16.11 Coherency between two phases366

16.12 Solute drag371

17 Kinetics of transport processes377

17.1 Thermal activation377

17.2 Diffusion coefficients381

17.3 Stationary states for transport processes384

17.4 Local volume change388

17.5 Composition of material crossing an interface390

17.6 Mechanisms of interface migration391

17.7 Balance of forces and dissipation396

18 Methods of modelling400

18.1 General principles400

18.2 Choice of characteristic state function401

18.3 Reference states402

18.4 Representation of Gibbs energy of formation405

18.5 Use of power series in T407

18.6 Representation of pressure dependence408

18.7 Application of physical models410

18.8 Ideal gas411

18.9 Real gases412

18.10 Mixtures of gas species415

18.11 Black-body radiation417

18.12 Electron gas418

19 Modelling of disorder420

19.1 Introduction420

19.2 Thermal vacancies in a crystal420

19.3 Topological disorder423

19.4 Heat capacity due to thermal vibrations425

19.5 Magnetic contribution to thermodynamic properties429

19.6 A simple physical model for the magnetic contribution431

19.7 Random mixture of atoms434

19.8 Restricted random mixture436

19.9 Crystals with stoichiometric vacancies437

19.10 Interstitial solutions439

20 Mathematical modelling of solution phases441

20.1 Ideal solution441

20.2 Mixing quantities443

20.3 Excess quantities444

20.4 Empirical approach to substitutional solutions445

20.5 Real solutions448

20.6 Applications of the Gibbs-Duhem relation452

20.7 Dilute solution approximations454

20.8 Predictions for solutions in higher-order systems456

20.9 Numerical methods of predictions for higher-order systems458

21 Solution phases with sublattices460

21.1 Sublattice solution phases460

21.2 Interstitial solutions462

21.3 Reciprocal solution phases464

21.4 Combination of interstitial and substitutional solution468

21.5 Phases with variable order469

21.6 Ionic solid solutions472

22 Physical solution models476

22.1 Concept ofnearest-neighbour bond energies476

22.2 Random mixing model for a substitutional solution478

22.3 Deviation from random distribution479

22.4 Short-range order482

22.5 Long-range order484

22.6 Long-and short-range order486

22.7 The compound energy formalism with short-range order488

22.8 Interstitial ordering490

22.9 Composition dependence of physical effects493

References496

Index499

热门推荐